Hydrogen’s promise: How fuel cells might power lower-carbon datacentres
Souhaitez-vous recommander cette contribution? Cela peut se faire via :
Could UK datacentre operators soon adopt emerging hydrogen technologies to reach expanding energy and emissions requirements?
The UK government says hydrogen is key to future energy supplies, even planning national subsidies to beef up production by the end of 2022. However, the embryonic hydrogen industry has not yet tackled the investment, sustainability and cost issues around data storage use cases.
Roberto Castaldini, the new-product-focused offering specialist at Vertiv, says the growing urgency of sustainability is driving hydrogen energy solutions for the datacentre, and incentivising investment.
“Usually datacentre and IT systems require consistent energy continuously, 24/7,” says Castaldini. “We then have a huge demand for batteries, for example, to support [intermittent] power from renewables. And there is the carbon footprint and other sustainability issues.”
Emerging hydrogen fuel-cell technologies offer potential for backup loads as well as off-grid or primary power that is reliable and sustainable, for combined heat and power applications, grid and micro-grid support. An Atos-HDF Energy venture has said its first hydrogen-powered datacentre will be online by 2023.
Meanwhile, Vertiv has joined a consortium of seven companies, including Equinix, InfraPrime, RISE, Snam and SolidPower, working with Europe’s Clean Hydrogen Partnership to develop a next-generation fuel-cell platform for datacentres.
“We are developing a UPS [uninterruptible power supply] and battery solution to go together with the fuel cell,” says Castaldini. “In one case, the proton exchange membrane [PEM] fuel cells from Ballard are used for backup power, instead of a diesel generator.”
Another proof-of-concept project is developing fuel cells as a primary datacentre power system, inverting the usual approach by using grid energy as the backup power source. Of course, hydrogen fuel solutions are already produced on an industrial scale for the automotive sector.
“We want to develop UPS features in particular on the firmware side to work with this technology, and plan next year to start producing standard UPS systems that are capable of interacting with the fuel sensor,” says Castaldini.
“It’s hard to have the numbers right now because there are very few applications with a very precise and green lifecycle of hydrogen”
Roberto Castaldini, Vertiv
Used in a pure-hydrogen fuel cell, the waste product is water vapour – which technically suggests zero emissions. But in the real world, emissions are also produced in the manufacture of the technology and processes including haulage and storage.
“We have brown hydrogen obtained by fossil fuels. We have blue hydrogen – also obtained via fossil fuels but with a process of CO2 capture,” he says. “What I call violet or purple hydrogen comes from nuclear. Then there is the one everybody wants, which is green hydrogen, obtained by electrolysis of water and with electricity gained by renewable sources like solar photovoltaic or wind.”
But even considering the entire technological lifecycle, introducing hydrogen energy as part of the mix will deliver a chance to reduce emissions by reducing use of fossil fuels – not least because hydrogen is typically required in comparatively low volumes per equivalent amount of energy.
“It’s hard to have the numbers right now because there are very few applications with a very precise and green lifecycle of hydrogen,” says Castaldini. “But compared to the current situation, it’s definitely an improvement.”
Europe’s Clean Hydrogen Partnership put €300.5m (£252.9m) up for grabs in its first call for proposals, in February 2022, to develop clean hydrogen technologies. To put that into perspective, the UK’s Industrial Hydrogen Accelerator fund has earmarked £26m for feasibility or risk and cost reduction proofs for hydrogen fuel – although the government said in August 2021 that it would “unlock £4bn in investment by 2030”.
Hold-ups on hydrogen adoption
Although hydrogen has few technological rivals when it comes to lower-emission, compact footprint systems for backup or primary power, it is expensive compared with the current power grid, with diesel generators as backup and batteries for short-term discharges. Hydrogen itself also must be stored, expensively, under pressure or at very low temperatures.
Costs are starting to come down as the market grows, but regulation is another barrier. Although other industrial sectors already use hydrogen – such as glass and food production – a new framework of permissions, certifications and laws for hydrogen fuel is needed, says Castaldini.
Graham Smith, senior research scientist at the UK’s national institute of metrology, the National Physical Laboratory, calls lithium batteries “a non-starter” for daily, weekly or monthly storage on a countrywide grid scale, and in the UK, the tech and economics of other redox-flow battery types also remain unproven. That said, hydrogen could reuse existing UK gas infrastructure.
“Hydrogen storage can be done cheaply and at scale for a long time, filling underground caverns with compressed gas,” says Smith. “Storing hydrogen this way is one of the few methods available for storing enough energy to properly manage the variances in UK energy consumption from month to month and season to season.
“We already do it safely with natural gas. There are some engineering and economics questions, but they don’t require a breakthrough new technology.”
But there is a drawback: hydrogen technology for electricity generation – as opposed to transport or heating – is not quite ready for prime time yet, warns Smith, adding that the thermodynamic efficiency of the electrolysis process used in fuel cells is low – about 50%.
“This is commonly stated, but people miss the point that transitioning to a new paradigm where storage is difficult is expensive in relation to the cost of energy,” he says. “But we do still need to do it.”
Smith says a massive, energy-thirsty scale-up of UK capacity to produce electrolysers for creating hydrogen is needed – itself entailing a faster roll-out of sustainable, renewable and clean energy. Some five to 10 times the UK’s current electricity supply capabilities are needed to replace natural gas. Also, some electrolyser technologies use quite rare materials.
“For example, proton exchange membrane water electrolysis [PEMWE] solutions only use iridium-based catalysts, the supply of which is inelastic,” he says, adding that at the same time, for some 80% of end-use cases for hydrogen energy, alternatives exist, such as batteries or heat pumps.
Vidal Bharath, chief operating officer at UK hydrogen fuel cell company Bramble Energy, sees a mixture of fuel and energy sources in future, with fuel cells five times the price of a diesel engine and “thousands of pounds” per kW.
“We need to make a big step-change in the cost of exactly what we do,” he says. “Then you need quite complex, precise factories to build it. They exist but haven’t the full capacity for when you move on to the next generation of technology – and it takes 12 months to build a new factory.”
Bramble has developed a printed circuit board fuel cell (PCBFC) that it believes could be made in many printed circuit board factories. It has already launched a portable power product range and is developing a high-power density, liquid-cooled fuel system on a scalable, low-cost platform.
When it comes to safety worries, Bharath notes that society already deals daily with extremely flammable fuels, such as petrol.
But when hydrogen vents, it can happen quickly – making it potentially safer than natural gas in similar circumstances, not building up in a system before it blows. The right infrastructure can allow hydrogen to vent as and when into the atmosphere, he says.
“Loads of hydrogen” traverses UK roads every day – although the country is well behind the likes of Japan, California and Germany when it comes to hydrogen, with about 70Mt of hydrogen already used worldwide each year, says Bharath.
It can’t simply be about things like “adding more batteries to your electric vehicle” because that makes for more weight to transport, with fuel-cell systems possibly weighing 75% less for an equivalent energy requirement, he points out.
“If we commit to it, it can happen,” says Bharath. “We need to have more input from companies on ‘these are the areas that we think we could get to or we can decompose as quickly as possible’.”
Hydrogen energy could be cost-effective
Rami Reshef is CEO at Israel-based GenCell, which has developed fuel-cell technologies for UPS, backup and off-grid power, including for utilities. He says stationary fuel cells already generate power at Apple, Verizon and Coca-Cola, and hydrogen-fuelled vehicles are appearing worldwide, with refilling stations already widespread in some countries.
“If the world would like to meet sustainability goals by 2040-2060, hydrogen will be a key player,” says Reshef. “Some analysts figure that hydrogen will comprise 20-25% of the energy market by 2050. Infrastructure must be new, beyond what we have, and we don’t want to use fossil fuels.”
“Hydrogen can help keep our life as it is, while watching out for Mother Nature”
Rami Reshef, GenCell
Hydrogen fuel cells can also support critical infrastructure potentially through extreme conditions – including heatwaves, storms and floods caused by climate change. Meanwhile, emerging markets not connected to the grid have a “dire need” for clean power for basic needs – and to move away from diesel generators, says Reshef.
Among multiple emerging fuel-cell technologies, one by GenCell uses liquid ammonia (NH3) instead of H2 as fuel for the oxidation reaction, he says.
By volume, liquid NH3 has twice as much hydrogen as liquid hydrogen and can be stored in large tanks at room temperature. Some 200Mt of NH3 are already produced each year and transported globally via pipelines, tankers and lorries – it is used widely to make fertiliser, for example.
Although not as “green” and zero-emission as H2, delivery and use at massive scale can be more cost-effective, says Reshef. Plus, water can be used as a feedstock.
“Think about locations in the world that don’t have hydrogen but do have water,” he says. “This is something that definitely will change the world and improve the lives of many people. Hydrogen can help keep our life as it is, while watching out for Mother Nature.”
Nous sommes fiers d’annoncer qu’EasyComp Host a lancé un site Web remanié avec des options d’hébergement encore plus puissantes. En plus de notre nouveau site Web, nous avons doublé la capacité de notre rack de serveurs et nous sommes entièrement sous notre propre gestion. Cela signifie que nous sommes en mesure de maintenir nos prix aussi bas que possible tout en continuant à fournir à nos clients le meilleur service. En conséquence, nous sommes aptes à d’offrir jusqu’à 5x plus que ce n’était le cas auparavant et tout cela pour un prix zélandais !
Subpostmaster campaign group is a step closer to achieving what it was originally set up to do as government launches compensation scheme for its members who did not receive fair payouts
We gebruiken cookies op onze website om u de beste ervaring te bieden door uw voorkeuren te onthouden. Door op "Alles accepteren" te klikken, stemt u in met het gebruik van ALLE cookies. U kunt echter "Cookie-instellingen" bezoeken om een gecontroleerde toestemming te geven.
Ce site web utilise des cookies pour améliorer votre expérience pendant que vous naviguez sur le site. Parmi ceux-ci, les cookies classés comme nécessaires sont stockés dans votre navigateur car ils sont essentiels au fonctionnement des fonctionnalités de base du site Web. Nous utilisons également des cookies tiers qui nous aident à analyser et à comprendre comment vous utilisez ce site Web. Ces cookies ne sont stockés dans votre navigateur qu’avec votre autorisation. Vous avez également la possibilité de refuser ces cookies. Mais la désactivation de certains de ces cookies peut affecter votre expérience de navigation.
Les cookies nécessaires sont absolument nécessaires au bon fonctionnement du site Web. Ces cookies fournissent de manière anonyme des fonctionnalités de base et des fonctions de sécurité du site Web.
Cookie
Durée
Définition
cookielawinfo-checkbox-advertisement
1 an
Le cookie est utilisé pour enregistrer le consentement de l’utilisateur aux cookies dans la catégorie « Publicité ».
cookielawinfo-checkbox-analytics
11 mois
Le cookie est utilisé pour stocker le consentement de l’utilisateur aux cookies dans la catégorie « Analytics ».
cookielawinfo-checkbox-functional
11 mois
Le cookie consent au consentement de l’utilisateur à l’utilisation des cookies dans la catégorie « Fonctionnel ».
cookielawinfo-checkbox-necessary
11 mois
Les cookies sont utilisés pour stocker le consentement de l’utilisateur aux cookies dans la catégorie « Nécessaire ».
cookielawinfo-checkbox-others
11 mois
De cookie wordt gebruikt om de toestemming van de gebruiker voor de cookies op te slaan in de categorie "Overige".
cookielawinfo-checkbox-performance
11 mois
Le cookie est utilisé pour stocker le consentement de l’utilisateur aux cookies dans la catégorie « Performance ».
PHPSESSID
session
Ce cookie est natif des applications PHP. Le cookie est utilisé pour stocker et identifier l’ID de session unique d’un utilisateur dans le but de gérer la session de l’utilisateur sur le site Web. Le cookie est un cookie de session et est supprimé lorsque toutes les fenêtres du navigateur sont fermées.
viewed_cookie_policy
11 mois
Ce cookie est utilisé pour stocker si l’utilisateur a consenti ou non à l’utilisation de cookies. Il ne stocke aucune information personnelle.
Les cookies fonctionnels aident à exécuter certaines fonctionnalités, telles que le partage du contenu du site Web sur les plateformes de médias sociaux, la collecte de commentaires et d’autres fonctions de tiers.
Les cookies de performance sont utilisés pour comprendre et analyser les principaux indices de performance du site Web, ce qui permet d’offrir une meilleure expérience utilisateur aux visiteurs.
Les cookies analytiques sont utilisés pour comprendre comment les visiteurs interagissent avec le site Web. Ces cookies aident à fournir des informations sur les statistiques de nombre de visiteurs, le taux de rebond, la source de trafic, etc.
Cookie
Durée
Définition
tk_lr
1 an
Ce cookie est défini par l’environnement de nos clients. Il s’agit d’un cookie de référence utilisé pour analyser le comportement des référents pour les clients.
tk_or
5 ans
Ce cookie est défini par l’environnement de nos clients. Il s’agit d’un cookie de référence utilisé pour analyser le comportement des référents pour les non-clients.
tk_r3d
3 jours
Ce cookie est utilisé pour les statistiques internes des activités des utilisateurs afin d’améliorer l’expérience utilisateur.
Les cookies publicitaires sont utilisés pour fournir aux visiteurs des publicités et des campagnes de marketing pertinentes. Ces cookies suivent les visiteurs sur divers sites Web et collectent des informations pour fournir des publicités personnalisées.
Les autres cookies non catégorisés sont des cookies qui sont analysés et ne sont pas encore classés dans une catégorie.
Cookie
Durée
Définition
session_bfa6759e8384b4696a46fcee8614f284
2 jours
Le cookie est utilisé pour stocker et identifier l’ID de session unique d’un utilisateur dans le but de gérer la session de l’utilisateur sur le site Web. Le cookie est un cookie de session et est supprimé lorsque toutes les fenêtres du navigateur sont fermées.